• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Trinh, Cong
    Whited, Matthew T.
    Steiner, Andrew
    Tassone, Christopher J.
    Toney, Michael F.
    Thompson, Mark E.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2012-06-26
    Online Publication Date
    2012-06-26
    Print Publication Date
    2012-07-10
    Permanent link to this record
    http://hdl.handle.net/10754/597765
    
    Metadata
    Show full item record
    Abstract
    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.
    Citation
    Trinh C, Whited MT, Steiner A, Tassone CJ, Toney MF, et al. (2012) Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance. Chem Mater 24: 2583–2591. Available: http://dx.doi.org/10.1021/cm3012777.
    Sponsors
    We thank Profs. Stephen Forrest (University of Michigan) and Peter Djurovich (University of Southern California), as well as Drs. Cody Schlenker and Zhiwei Liu for helpful discussions. We thank Francisco Navarro for the help in spectral resolved photoluminescence quenching measurements. We acknowledge financial support from the Global Photonic Energy Corporation (GPEC), the King Abdullah University of Science and Technology (KAUST, KUS-C1-015-21), and the National Science Foundation (NSF) Solar Energy Initiative (SOLAR, CHE-0934098). The NSF is also acknowledged for the funds used to acquire the X-ray diffractometer used to determine the structure of ZnTPP.tz, through an NSF CRIF Grant 1048807. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm3012777
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm3012777
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.