Chebfun and numerical quadrature

Type
Article

Authors
Hale, Nicholas
Trefethen, Lloyd N.

KAUST Grant Number
KUK-C1-013-04

Online Publication Date
2012-07-24

Print Publication Date
2012-09

Date
2012-07-24

Abstract
Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun's fast capabilities for Clenshaw-Curtis and also Gauss-Legendre, -Jacobi, -Hermite, and -Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu and Rokhlin. Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

Citation
Hale N, Trefethen LN (2012) Chebfun and numerical quadrature. Sci China Math 55: 1749–1760. Available: http://dx.doi.org/10.1007/s11425-012-4474-z.

Acknowledgements
This work was supported by the MathWorks, Inc., King Abdullah University of Science and Technology (KAUST) (Award No. KUK-C1-013-04), and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC (Grant Agreement No. 291068) 2).

Publisher
Springer Nature

Journal
Science China Mathematics

DOI
10.1007/s11425-012-4474-z

Permanent link to this record