• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT]

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Poelking, Carl
    Cho, Eunkyung
    Malafeev, Alexander
    Ivanov, Viktor
    Kremer, Kurt
    Risko, Chad
    Brédas, Jean-Luc
    Andrienko, Denis cc
    Date
    2013-01-22
    Online Publication Date
    2013-01-22
    Print Publication Date
    2013-01-31
    Permanent link to this record
    http://hdl.handle.net/10754/597757
    
    Metadata
    Show full item record
    Abstract
    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.
    Citation
    Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, et al. (2013) Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT] . The Journal of Physical Chemistry C 117: 1633–1640. Available: http://dx.doi.org/10.1021/jp311160y.
    Sponsors
    The work in Maim was partly supported by the DFG programs IRTG 1328 and SPP 1355, and BMBF grants MESOMERIE and MEDOS. The work at Georgia Tech was supported by the Center for Advanced Molecular Photovoltaics funded through the King Abdullah University of Science and Technology (KAUST). We are grateful to Bjorn Baumeier, Pascal Kordt, Anton Melnyk, Kostas Daoulas, Patrick Gemunden, and Mara Jochum for critical reading of the manuscript.
    Publisher
    American Chemical Society (ACS)
    Journal
    The Journal of Physical Chemistry C
    DOI
    10.1021/jp311160y
    ae974a485f413a2113503eed53cd6c53
    10.1021/jp311160y
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.