• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kim, Younggy
    Hatzell, Marta C.
    Hutchinson, Adam J.
    Logan, Bruce E.
    KAUST Grant Number
    KUS-I1-003-13
    Date
    2011
    Permanent link to this record
    http://hdl.handle.net/10754/597724
    
    Metadata
    Show full item record
    Abstract
    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.
    Citation
    Kim Y, Hatzell MC, Hutchinson AJ, Logan BE (2011) Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environ Sci 4: 4662. Available: http://dx.doi.org/10.1039/c1ee02451e.
    Sponsors
    This research was supported by funding through the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Energy & Environmental Science
    DOI
    10.1039/c1ee02451e
    ae974a485f413a2113503eed53cd6c53
    10.1039/c1ee02451e
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.