Show simple item record

dc.contributor.authorOrnelas, Catia
dc.date.accessioned2016-02-25T12:44:34Z
dc.date.available2016-02-25T12:44:34Z
dc.date.issued2015-12-09
dc.identifier.citationOrnelas C (2015) Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations. Macromolecular Chemistry and Physics 217: 149–174. Available: http://dx.doi.org/10.1002/macp.201500393.
dc.identifier.issn1022-1352
dc.identifier.doi10.1002/macp.201500393
dc.identifier.urihttp://hdl.handle.net/10754/597695
dc.description.abstract© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Dendrimers are well-defined branched macromolecules that have been studied for a wide variety of applications. Possibility to add multiple functionalities in precise locations of the dendritic structure generated great expectations for the application of dendrimers in nanomedicine, however, the number of dendrimer-based formulations that advance to clinical studies has been somewhat deceiving. This is partially due to the nonreproducible pharmokinetic behavior observed for multifunctional dendrimers synthesized through the random-statistical approach that leads to mixtures of products. Therefore, it is crucial to develop multifunctional dendrimers with well-defined structures in order to increase the chances of meeting the clinical expectations placed on dendrimers. This talent article will give an overview of the dendrimer field, discussing the application of dendrimers in nanomedicine, light-harvesting systems, sensing and catalysis, with a critical analysis on the expectations, limitations, advances, current challenges and future directions. Dendrimer timelapse demonstrates constant evolution in dendrimer chemistry enabling their application in nanomedicine, protein mimic, catalysis, light harvesting systems, and sensing. Increasing the variety of functionalities in dendrimers located at precise sites of the dendritic backbone result in versatile multifunctional nanomaterials that in the future might approach the conceptual nanobots.
dc.description.sponsorshipThe author is verygrateful to her former supervisors andmentors, namely, Prof. João Rodriguesfrom University of Madeira, Prof. DidierAstruc, and Dr. Jaime Ruiz Aranzaesfrom University of Bordeaux, Prof.Marcus Weck from New York University,Prof. Jean M. J. Fréchet from Universityof California Berkeley (currently atKAUST), Prof. Ana Moore, Prof. ThomasMoore, and Prof. Devens Gust fromArizona State University. Financialsupport has been provided by Sao PauloResearch Foundation (FAPESP, Grant No.2013/11519–7) and National Council forScientific and Technological Development(CNPq, grant No. 445556/2014-5). Prof.Jackson D. Megiatto Jr. is gratefullyacknowledged for his input on thisarticle.
dc.publisherWiley
dc.subjectdendrimers
dc.subjectmacromolecules
dc.subjectmultifunctional
dc.subjectpolymers
dc.subjectwell-defined
dc.titleBrief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations
dc.typeArticle
dc.identifier.journalMacromolecular Chemistry and Physics
dc.contributor.institutionInstitute of Chemistry; University of Campinas - Unicamp; Campinas SP 13083-970 Brazil
dc.date.published-online2015-12-09
dc.date.published-print2016-01


This item appears in the following Collection(s)

Show simple item record