Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves
Type
ArticleKAUST Grant Number
UK-c0020Date
2014-09-29Online Publication Date
2014-09-29Print Publication Date
2014-09Permanent link to this record
http://hdl.handle.net/10754/597685
Metadata
Show full item recordAbstract
© 2014 World Scientific Publishing Company. Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids. Even though they directly yield a mesh, it is often computationally reasonable to embed regular Cartesian blocks into their leaves. This promotes stencils working on homogeneous data chunks. The choice of a proper block size is sensitive. While large block sizes foster loop parallelism and vectorisation, they restrict the adaptivity's granularity and hence increase the memory footprint and lower the numerical accuracy per byte. In the present paper, we therefore use a multiscale spacetree-block coupling admitting blocks on all spacetree nodes. We propose to find sets of blocks on the finest scale throughout the simulation and to replace them by fused big blocks. Such a replacement strategy can pick up hardware characteristics, i.e. which block size yields the highest throughput, while the dynamic adaptivity of the fine grid mesh is not constrained - applications can work with fine granular blocks. We study the fusion with a state-of-the-art shallow water solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate their reaction to selected block optimisation and vectorisation.Citation
Weinzierl T, Bader M, Unterweger K, Wittmann R (2014) Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves. Parallel Process Lett 24: 1441006. Available: http://dx.doi.org/10.1142/S0129626414410060.Sponsors
Tobias Weinzierl appreciates the support of the School of Engineering and Computing Sciences and in particular Tomasz Koziara at Durham University for providingPublisher
World Scientific Pub Co Pte LtJournal
Parallel Processing Lettersae974a485f413a2113503eed53cd6c53
10.1142/S0129626414410060