• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Weinzierl, Tobias
    Bader, Michael
    Unterweger, Kristof
    Wittmann, Roland cc
    KAUST Grant Number
    UK-c0020
    Date
    2014-09-29
    Online Publication Date
    2014-09-29
    Print Publication Date
    2014-09
    Permanent link to this record
    http://hdl.handle.net/10754/597685
    
    Metadata
    Show full item record
    Abstract
    © 2014 World Scientific Publishing Company. Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids. Even though they directly yield a mesh, it is often computationally reasonable to embed regular Cartesian blocks into their leaves. This promotes stencils working on homogeneous data chunks. The choice of a proper block size is sensitive. While large block sizes foster loop parallelism and vectorisation, they restrict the adaptivity's granularity and hence increase the memory footprint and lower the numerical accuracy per byte. In the present paper, we therefore use a multiscale spacetree-block coupling admitting blocks on all spacetree nodes. We propose to find sets of blocks on the finest scale throughout the simulation and to replace them by fused big blocks. Such a replacement strategy can pick up hardware characteristics, i.e. which block size yields the highest throughput, while the dynamic adaptivity of the fine grid mesh is not constrained - applications can work with fine granular blocks. We study the fusion with a state-of-the-art shallow water solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate their reaction to selected block optimisation and vectorisation.
    Citation
    Weinzierl T, Bader M, Unterweger K, Wittmann R (2014) Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves. Parallel Process Lett 24: 1441006. Available: http://dx.doi.org/10.1142/S0129626414410060.
    Sponsors
    Tobias Weinzierl appreciates the support of the School of Engineering and Computing Sciences and in particular Tomasz Koziara at Durham University for providing
    Publisher
    World Scientific Pub Co Pte Lt
    Journal
    Parallel Processing Letters
    DOI
    10.1142/S0129626414410060
    ae974a485f413a2113503eed53cd6c53
    10.1142/S0129626414410060
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.