• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Blind RRT: A probabilistically complete distributed RRT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Rodriguez, Cesar
    Denny, Jory
    Jacobs, Sam Ade
    Thomas, Shawna
    Amato, Nancy M.
    KAUST Grant Number
    KUSC1-016-04
    Date
    2013-11
    Permanent link to this record
    http://hdl.handle.net/10754/597681
    
    Metadata
    Show full item record
    Abstract
    Rapidly-Exploring Random Trees (RRTs) have been successful at finding feasible solutions for many types of problems. With motion planning becoming more computationally demanding, we turn to parallel motion planning for efficient solutions. Existing work on distributed RRTs has been limited by the overhead that global communication requires. A recent approach, Radial RRT, demonstrated a scalable algorithm that subdivides the space into regions to increase the computation locality. However, if an obstacle completely blocks RRT growth in a region, the planning space is not covered and is thus not probabilistically complete. We present a new algorithm, Blind RRT, which ignores obstacles during initial growth to efficiently explore the entire space. Because obstacles are ignored, free components of the tree become disconnected and fragmented. Blind RRT merges parts of the tree that have become disconnected from the root. We show how this algorithm can be applied to the Radial RRT framework allowing both scalability and effectiveness in motion planning. This method is a probabilistically complete approach to parallel RRTs. We show that our method not only scales but also overcomes the motion planning limitations that Radial RRT has in a series of difficult motion planning tasks. © 2013 IEEE.
    Citation
    Rodriguez C, Denny J, Jacobs SA, Thomas S, Amato NM (2013) Blind RRT: A probabilistically complete distributed RRT. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Available: http://dx.doi.org/10.1109/IROS.2013.6696587.
    Sponsors
    This research supported in part by NSF awards CNS-0551685, CCF-0833199, CCF-0830753, IIS-0917266, IIS-0916053, EFRI-1240483, RI-1217991, by NSF/DNDO award 2008-DN-077-ARI018-02, by NIH NCIR25 CA090301-11, by DOE awards DE-FC52-08NA28616, DE-AC02-06CH11357, B575363, B575366, by THECB NHARP award 000512-0097-2009, by Samsung, Chevron, IBM, Intel, Oracle/Sun and by Award KUSC1-016-04, made by King Abdullah University of Science and Technology(KAUST). This research used resources of the National Energy ResearchScientific Computing Center, which is supported by the Office of Science ofthe U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
    DOI
    10.1109/IROS.2013.6696587
    ae974a485f413a2113503eed53cd6c53
    10.1109/IROS.2013.6696587
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.