• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Binocular Rivalry in a Competitive Neural Network with Synaptic Depression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kilpatrick, Zachary P.
    Bressloff, Paul C.
    KAUST Grant Number
    KUK-C1-013-4
    Date
    2010-01
    Permanent link to this record
    http://hdl.handle.net/10754/597670
    
    Metadata
    Show full item record
    Abstract
    We study binocular rivalry in a competitive neural network with synaptic depression. In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing orientation selective cells responding to either left or right eye inputs. Coupling between hypercolumns is dominated by inhibition, especially for neurons with dissimilar orientation preferences. Within hypercolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for different orientations. All synaptic connections are modifiable by local synaptic depression. When the hypercolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that are representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-clamped version of the model using a fast-slow analys is, taking advantage of the fact that depression evolves much slower than population activity. We th en analyze the onset of oscillations in the full spatially extended system by carrying out a piecewise smooth stability analysis of single (winner-take-all) and double (fusion) bumps within the network. Although our stability analysis takes into account only instabilities associated with real eigenvalues, it identifies points of instability that are consistent with what is found numerically. In particular, we show that, in regions of parameter space where double bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow alternation between either population supporting a bump. © 2010 Society for Industrial and Applied Mathematics.
    Citation
    Kilpatrick ZP, Bressloff PC (2010) Binocular Rivalry in a Competitive Neural Network with Synaptic Depression. SIAM J Appl Dyn Syst 9: 1303–1347. Available: http://dx.doi.org/10.1137/100788872.
    Sponsors
    This research was supported in part by the National Science Foundation (DMS-0813677) and by award KUK-C1-013-4 made by King Abdullah University of Science and Technology (KAUST).The work of this author was partially supported by the Royal Society Wolfson Foundation.
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Applied Dynamical Systems
    DOI
    10.1137/100788872
    ae974a485f413a2113503eed53cd6c53
    10.1137/100788872
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.