• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Martínez-Veracoechea, Francisco J.
    Escobedo, Fernando A.
    Date
    2009-03-10
    Permanent link to this record
    http://hdl.handle.net/10754/597667
    
    Metadata
    Show full item record
    Abstract
    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber's nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.
    Citation
    Martínez-Veracoechea FJ, Escobedo FA (2009) Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory. Macromolecules 42: 1775–1784. Available: http://dx.doi.org/10.1021/ma802427a.
    Sponsors
    We thank Prof. David Morse and his student Jian Qin for providing the code and generous guidance to implement the SCFT Calculations. We also thank Prof. U. Wiesner for helpful discussions. The financial support by the NSF (grant 0756248) and by the Cornell-KAUST center is gratefully acknowledged.
    Publisher
    American Chemical Society (ACS)
    Journal
    Macromolecules
    DOI
    10.1021/ma802427a
    ae974a485f413a2113503eed53cd6c53
    10.1021/ma802427a
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.