• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Mondal, A.
    Efendiev, Y.
    Mallick, B.
    Datta-Gupta, A.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2010-03
    Permanent link to this record
    http://hdl.handle.net/10754/597660
    
    Metadata
    Show full item record
    Abstract
    In this paper, we study the uncertainty quantification in inverse problems for flows in heterogeneous porous media. Reversible jump Markov chain Monte Carlo algorithms (MCMC) are used for hierarchical modeling of channelized permeability fields. Within each channel, the permeability is assumed to have a lognormal distribution. Uncertainty quantification in history matching is carried out hierarchically by constructing geologic facies boundaries as well as permeability fields within each facies using dynamic data such as production data. The search with Metropolis-Hastings algorithm results in very low acceptance rate, and consequently, the computations are CPU demanding. To speed-up the computations, we use a two-stage MCMC that utilizes upscaled models to screen the proposals. In our numerical results, we assume that the channels intersect the wells and the intersection locations are known. Our results show that the proposed algorithms are capable of capturing the channel boundaries and describe the permeability variations within the channels using dynamic production history at the wells. © 2009 Elsevier Ltd. All rights reserved.
    Citation
    Mondal A, Efendiev Y, Mallick B, Datta-Gupta A (2010) Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods. Advances in Water Resources 33: 241–256. Available: http://dx.doi.org/10.1016/j.advwatres.2009.10.010.
    Sponsors
    We would like to acknowledge NSF CMG 0724704 This work is partly supported by Award Number KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Elsevier BV
    Journal
    Advances in Water Resources
    DOI
    10.1016/j.advwatres.2009.10.010
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.advwatres.2009.10.010
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.