Bayesian Semiparametric Density Deconvolution in the Presence of Conditionally Heteroscedastic Measurement Errors
Type
ArticleKAUST Grant Number
KUS-CI-016-04Date
2014-10-20Online Publication Date
2014-10-20Print Publication Date
2014-10-02Permanent link to this record
http://hdl.handle.net/10754/597657
Metadata
Show full item recordAbstract
We consider the problem of estimating the density of a random variable when precise measurements on the variable are not available, but replicated proxies contaminated with measurement error are available for sufficiently many subjects. Under the assumption of additive measurement errors this reduces to a problem of deconvolution of densities. Deconvolution methods often make restrictive and unrealistic assumptions about the density of interest and the distribution of measurement errors, e.g., normality and homoscedasticity and thus independence from the variable of interest. This article relaxes these assumptions and introduces novel Bayesian semiparametric methodology based on Dirichlet process mixture models for robust deconvolution of densities in the presence of conditionally heteroscedastic measurement errors. In particular, the models can adapt to asymmetry, heavy tails and multimodality. In simulation experiments, we show that our methods vastly outperform a recent Bayesian approach based on estimating the densities via mixtures of splines. We apply our methods to data from nutritional epidemiology. Even in the special case when the measurement errors are homoscedastic, our methodology is novel and dominates other methods that have been proposed previously. Additional simulation results, instructions on getting access to the data set and R programs implementing our methods are included as part of online supplemental materials.Citation
Sarkar A, Mallick BK, Staudenmayer J, Pati D, Carroll RJ (2014) Bayesian Semiparametric Density Deconvolution in the Presence of Conditionally Heteroscedastic Measurement Errors. Journal of Computational and Graphical Statistics 23: 1101–1125. Available: http://dx.doi.org/10.1080/10618600.2014.899237.Sponsors
Carroll's research was supported in part by grants R37-CA057030 and R25T-CA090301 from the National Cancer Institute. Mallick's research was supported in part by National Science Foundation grant DMS0914951. Staudenmayer's work was supported in part by NIH grants CA121005 and R01-HL099557. The authors thank Jeff Hart, John P. Buonaccorsi, and Susanne M. Schennach for their helpful suggestions. The authors also acknowledge the Texas A&M University Brazos HPC cluster that contributed to the research reported here. This publication is based in part on work supported by Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Informa UK LimitedPubMed ID
25378893PubMed Central ID
PMC4219602ae974a485f413a2113503eed53cd6c53
10.1080/10618600.2014.899237
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors.
- Authors: Sarkar A, Mallick BK, Carroll RJ
- Issue date: 2014 Dec
- Bayesian Semiparametric Multivariate Density Deconvolution.
- Authors: Sarkar A, Pati D, Chakraborty A, Mallick BK, Carroll RJ
- Issue date: 2018
- Semiparametric regression for measurement error model with heteroscedastic error.
- Authors: Li M, Ma Y, Li R
- Issue date: 2019 May
- Density estimation in the presence of heteroscedastic measurement error of unknown type using phase function deconvolution.
- Authors: Nghiem L, Potgieter CJ
- Issue date: 2018 Nov 10
- Bayesian Copula Density Deconvolution for Zero-Inflated Data in Nutritional Epidemiology.
- Authors: Sarkar A, Pati D, Mallick BK, Carroll RJ
- Issue date: 2021