• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Bayesian nonlinear regression for large small problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chakraborty, Sounak
    Ghosh, Malay
    Mallick, Bani K.
    KAUST Grant Number
    KUS-CI-016-04
    Date
    2012-07
    Permanent link to this record
    http://hdl.handle.net/10754/597653
    
    Metadata
    Show full item record
    Abstract
    Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
    Citation
    Chakraborty S, Ghosh M, Mallick BK (2012) Bayesian nonlinear regression for large small problems. Journal of Multivariate Analysis 108: 28–40. Available: http://dx.doi.org/10.1016/j.jmva.2012.01.015.
    Sponsors
    The research of Bani K Mallick was supported by National Science Foundation grant DMS 0914951 and by award KUS-CI-016-04 made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Elsevier BV
    Journal
    Journal of Multivariate Analysis
    DOI
    10.1016/j.jmva.2012.01.015
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jmva.2012.01.015
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.