Atomistic simulations of highly conductive molecular transport junctions under realistic conditions
Type
ArticleAuthors
French, William R.Iacovella, Christopher R.
Rungger, Ivan
Souza, Amaury Melo
Sanvito, Stefano
Cummings, Peter T.
Date
2013Permanent link to this record
http://hdl.handle.net/10754/597633
Metadata
Show full item recordAbstract
We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.Citation
French WR, Iacovella CR, Rungger I, Souza AM, Sanvito S, et al. (2013) Atomistic simulations of highly conductive molecular transport junctions under realistic conditions. Nanoscale 5: 3654. Available: http://dx.doi.org/10.1039/c3nr00459g.Sponsors
WRF acknowledges partial support from the U.S. Department ofEducation for a Graduate Assistance in Areas of National Need(GAANN) Fellowship under grant number P200A090323; WRF,CRI and PTC acknowledge partial support from the NationalScience Foundation through grant CBET-1028374. IR, AMS, andSS thank the King Abdullah University of Science and Technology(ACRAB project) for financial support. This researchused resources of the National Energy Research ScientificComputing Center (NERSC), which is supported by the Office ofScience of the U.S. Department of Energy under Contract no.DE-AC02-05CH11231; specifically, the conductance calculationswere performed on NERSC's Carver.Publisher
Royal Society of Chemistry (RSC)Journal
NanoscalePubMed ID
23552959ae974a485f413a2113503eed53cd6c53
10.1039/c3nr00459g
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions.
- Authors: French WR, Iacovella CR, Rungger I, Souza AM, Sanvito S, Cummings PT
- Issue date: 2013 Mar 21
- Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions.
- Authors: Kim YH, Kim HS, Lee J, Tsutsui M, Kawai T
- Issue date: 2017 Jun 21
- Molecular simulations of stretching gold nanowires in solvents.
- Authors: Pu Q, Leng Y, Zhao X, Cummings PT
- Issue date: 2007 Oct 24
- Single molecule electron transport junctions: charging and geometric effects on conductance.
- Authors: Andrews DQ, Cohen R, Van Duyne RP, Ratner MA
- Issue date: 2006 Nov 7
- Self-assembly of 1,4-benzenedithiolate/tetrahydrofuran on a gold surface: a Monte Carlo simulation study.
- Authors: Zhao X, Leng Y, Cummings PT
- Issue date: 2006 Apr 25