• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Burger, Jessica L.
    Schneider, Nico
    Bruno, Thomas J.
    Date
    2015-06-19
    Online Publication Date
    2015-06-19
    Print Publication Date
    2015-07-16
    Permanent link to this record
    http://hdl.handle.net/10754/597598
    
    Metadata
    Show full item record
    Abstract
    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.
    Citation
    Burger JL, Schneider N, Bruno TJ (2015) Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines. Energy Fuels 29: 4227–4235. Available: http://dx.doi.org/10.1021/acs.energyfuels.5b00749.
    Sponsors
    Jessica L. Burger acknowledges the PREP postdoctoral associateship program support for research performed at National Institute of Standards and Technology (NIST), Boulder, CO, for this work. Nico Schneider acknowledges the Ruhr University Research School PLUS, funded by Germany’s Excellence Initiative (DFG GSC 98/3) for support for this research. The collaboration of King Abdullah University of Science and Technology Clean Combustion Research Center for arranging access to the samples is gratefully acknowledged.
    Publisher
    American Chemical Society (ACS)
    Journal
    Energy & Fuels
    DOI
    10.1021/acs.energyfuels.5b00749
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.energyfuels.5b00749
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.