• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gasda, Sarah E.
    Nordbotten, Jan M.
    Celia, Michael A.
    Date
    2012-07
    Permanent link to this record
    http://hdl.handle.net/10754/597595
    
    Metadata
    Show full item record
    Abstract
    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.
    Citation
    Gasda SE, Nordbotten JM, Celia MA (2012) Application of simplified models to CO2 migration and immobilization in large-scale geological systems. International Journal of Greenhouse Gas Control 9: 72–84. Available: http://dx.doi.org/10.1016/j.ijggc.2012.03.001.
    Sponsors
    S.E. Gasda was supported by a research fellowship from the King Abdullah University of Science and Technology (KAUST). This work was supported in part by the National Science Foundation under Grant EAR-0934722; the Environmental ProtectionAgency under Cooperative Agreement RD-83438501; the Department of Energy under Award No. DE-FE0001161, CFDA No. 81,089; and the Carbon Mitigation Initiative at Princeton University.
    Publisher
    Elsevier BV
    Journal
    International Journal of Greenhouse Gas Control
    DOI
    10.1016/j.ijggc.2012.03.001
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ijggc.2012.03.001
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.