Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups
Type
ArticleAuthors
Bilić, AnteSanvito, Stefano
KAUST Grant Number
FIC/2010/08Date
2012-09-06Permanent link to this record
http://hdl.handle.net/10754/597581
Metadata
Show full item recordAbstract
Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.Citation
Bilić A, Sanvito S (2012) Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups. Physical Review B 86. Available: http://dx.doi.org/10.1103/PhysRevB.86.125409.Sponsors
This work was supported by the Flexible Electronics Theme of the CSIRO Future Manufacturing Flagship. A.B. thanks the CSIRO for support through the Julius Career Award. The use of the NCI National Facility supercomputers at the ANU is gratefully acknowledged. The SMEAGOL project is sponsored by Science Foundation of Ireland (Grant No. 07/IN/I945), by KAUST (FIC/2010/08) and by CRANN.Publisher
American Physical Society (APS)Journal
Physical Review Bae974a485f413a2113503eed53cd6c53
10.1103/PhysRevB.86.125409