• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjects

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Yeung, Ronald W.
    Peiffer, Antoine
    Tom, Nathan
    Matlak, Tomasz
    Date
    2010
    Permanent link to this record
    http://hdl.handle.net/10754/597568
    
    Metadata
    Show full item record
    Abstract
    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.
    Citation
    Yeung RW, Peiffer A, Tom N, Matlak T (2010) Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor. 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3. Available: http://dx.doi.org/10.1115/omae2010-20492.
    Sponsors
    The research reported has been supported in part by theKAUST (King Abdullah University of Science and Technology)and Berkeley AEA Award under Grant KAUST-25478 during2008-2010. We are grateful to D. Roddier of Marine Innovation& Technology, T. Raybon of the USCG, and at Berkeley, toJ. Khorsandi, K.-F. Kwok, and C. Cochet for their invaluable assistance,and to the many useful discussions with Professor DennisK. Lieu.
    Publisher
    ASME International
    Journal
    29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3
    DOI
    10.1115/omae2010-20492
    ae974a485f413a2113503eed53cd6c53
    10.1115/omae2010-20492
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.