Show simple item record

dc.contributor.authorHong, Jongsup
dc.contributor.authorKirchen, Patrick
dc.contributor.authorGhoniem, Ahmed F.
dc.date.accessioned2016-02-25T12:42:01Z
dc.date.available2016-02-25T12:42:01Z
dc.date.issued2013-10
dc.identifier.citationHong J, Kirchen P, Ghoniem AF (2013) Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes. Journal of Membrane Science 445: 96–106. Available: http://dx.doi.org/10.1016/j.memsci.2013.05.055.
dc.identifier.issn0376-7388
dc.identifier.doi10.1016/j.memsci.2013.05.055
dc.identifier.urihttp://hdl.handle.net/10754/597558
dc.description.abstractThe catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.
dc.description.sponsorshipThe authors would like to thank the King Fahd University of Petroleum and Minerals (KFUPM) in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center of Clean Water and Clean Energy at Massachusetts Institute of Technology and KFUPM. This work is also supported by King Abdullah University of Science and Technology grant number KSU-I1-010-01.
dc.publisherElsevier BV
dc.subjectCatalytic fuel conversion
dc.subjectCatalytic kinetics
dc.subjectCatalytic membrane reactor
dc.subjectOxygen surface exchange
dc.subjectPerovskite membrane
dc.subjectSurface reaction
dc.titleAnalysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes
dc.typeArticle
dc.identifier.journalJournal of Membrane Science
dc.contributor.institutionMassachusetts Institute of Technology, Cambridge, United States
dc.contributor.institutionThe University of British Columbia, Vancouver, Canada
kaust.grant.numberKSU-I1-010-01


This item appears in the following Collection(s)

Show simple item record