• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bramble, James H.
    Pasciak, Joseph E.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2013-08
    Permanent link to this record
    http://hdl.handle.net/10754/597548
    
    Metadata
    Show full item record
    Abstract
    We consider the application of a perfectly matched layer (PML) technique applied in Cartesian geometry to approximate solutions of the acoustic scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift ("stretching") and leads to a variable complex coefficient equation for the acoustic wave posed on an infinite domain, the complement of the bounded scatterer. The use of Cartesian geometry leads to a PML operator with simple coefficients, although, still complex symmetric (non-Hermitian). The PML reformulation results in a problem whose solution coincides with the original solution inside the PML layer while decaying exponentially outside. The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). This paper provides new stability estimates for the Cartesian PML approximations both on the infinite and the truncated domain. We first investigate the stability of the infinite PML approximation as a function of the PML strength σ0. This is done for PML methods which involve continuous piecewise smooth stretching as well as piecewise constant stretching functions. We next introduce a truncation parameter M which determines the size of the PML layer. Our analysis shows that the truncated PML problem is stable provided that the product of Mσ0 is sufficiently large, in which case the solution of the problem on the truncated domain converges exponentially to that of the original problem in the domain of interest near the scatterer. This justifies the simple computational strategy of selecting a fixed PML layer and increasing σ0 to obtain the desired accuracy. The results of numerical experiments varying M and σ0 are given which illustrate the theoretically predicted behavior. © 2013 Elsevier B.V. All rights reserved.
    Citation
    Bramble JH, Pasciak JE (2013) Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3. Journal of Computational and Applied Mathematics 247: 209–230. Available: http://dx.doi.org/10.1016/j.cam.2012.12.022.
    Sponsors
    This work was supported in part by award number KUS-C1-016-04 made by King Abdulla University of Science and Technology (KAUST). It was also partially supported by National Science Foundation grant number DMS-1216551.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational and Applied Mathematics
    DOI
    10.1016/j.cam.2012.12.022
    10.1016/j.jmaa.2010.05.006
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cam.2012.12.022
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.