Show simple item record

dc.contributor.authorJin, Bangti
dc.contributor.authorRundell, William
dc.date.accessioned2016-02-25T12:41:39Z
dc.date.available2016-02-25T12:41:39Z
dc.date.issued2012-05
dc.identifier.citationJin B, Rundell W (2012) An inverse Sturm–Liouville problem with a fractional derivative. Journal of Computational Physics 231: 4954–4966. Available: http://dx.doi.org/10.1016/j.jcp.2012.04.005.
dc.identifier.issn0021-9991
dc.identifier.doi10.1016/j.jcp.2012.04.005
dc.identifier.urihttp://hdl.handle.net/10754/597537
dc.description.abstractIn this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.
dc.description.sponsorshipThis work is supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST), and NSF Award DMS-0715060.
dc.publisherElsevier BV
dc.subjectFractional differential equation
dc.subjectInverse problem
dc.subjectMittag-Leffler function
dc.subjectSturm-Liouville problem
dc.titleAn inverse Sturm–Liouville problem with a fractional derivative
dc.typeArticle
dc.identifier.journalJournal of Computational Physics
dc.contributor.institutionTexas A and M University, College Station, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record