• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    An estimate of energy dissipation due to soil-moisture hysteresis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    McNamara, H.
    KAUST Grant Number
    KUK-C1–013-04
    Date
    2014-01-29
    Online Publication Date
    2014-01-29
    Print Publication Date
    2014-01
    Permanent link to this record
    http://hdl.handle.net/10754/597523
    
    Metadata
    Show full item record
    Abstract
    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.
    Citation
    McNamara H (2014) An estimate of energy dissipation due to soil-moisture hysteresis. Water Resour Res 50: 725–735. Available: http://dx.doi.org/10.1002/2012WR012634.
    Sponsors
    Part of this work was carried out while the author was supported by the Oxford Martin School. The author also benefited from the hospitality of the Aspen Center for Physics, courtesy of the National Science Foundation grant 1066393, and from award KUK-C1–013-04, made by King Abdullah University of Science and Technology (KAUST). A special acknowledgement must go to the late Alexei Pokrovskii, one of the originators of the mathematical theory of hysteresis, who suggested this investigation but unfortunately did not see its completion. A final acknowledgement is due to the reviewers of this manuscript who made important suggestions to make it clearer and more accessible.
    Publisher
    American Geophysical Union (AGU)
    Journal
    Water Resources Research
    DOI
    10.1002/2012WR012634
    ae974a485f413a2113503eed53cd6c53
    10.1002/2012WR012634
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.