Show simple item record

dc.contributor.authorGoswami, Deepjyoti
dc.contributor.authorPani, Amiya K.
dc.date.accessioned2016-02-25T12:41:06Z
dc.date.available2016-02-25T12:41:06Z
dc.date.issued2011-09
dc.identifier.citationGoswami D, Pani AK (2011) An Alternate Approach to Optimal L 2 -Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data . Numerical Functional Analysis and Optimization 32: 946–982. Available: http://dx.doi.org/10.1080/01630563.2011.587334.
dc.identifier.issn0163-0563
dc.identifier.issn1532-2467
dc.identifier.doi10.1080/01630563.2011.587334
dc.identifier.urihttp://hdl.handle.net/10754/597508
dc.description.abstractIn this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
dc.description.sponsorshipD. G. would like to thank CSIR, Government of India, for the financial support. A. K. P. acknowledges the support provided by the DST (Department of Science and Technology), Government of India project No 08DST012. This publication is also based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). The authors are grateful to the referees for their valuable suggestions and comments, which help to improve the present manuscript.
dc.publisherInforma UK Limited
dc.subjectEnergy arguments
dc.subjectFinite element
dc.subjectMaximum norm estimate
dc.subjectMixed finite element method
dc.subjectNonsmooth initial data
dc.subjectOptimal error estimates
dc.subjectParabolic equation
dc.subjectSuperconvergence result
dc.titleAn Alternate Approach to Optimal L 2 -Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data
dc.typeArticle
dc.identifier.journalNumerical Functional Analysis and Optimization
dc.contributor.institutionIndian Institute of Technology, Bombay, Mumbai, India
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record