• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Algorithms and data structures for massively parallel generic adaptive finite element codes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bangerth, Wolfgang
    Burstedde, Carsten
    Heister, Timo
    Kronbichler, Martin
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2011-12-01
    Permanent link to this record
    http://hdl.handle.net/10754/597487
    
    Metadata
    Show full item record
    Abstract
    Today's largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $\$$10.00.
    Citation
    Bangerth W, Burstedde C, Heister T, Kronbichler M (2011) Algorithms and data structures for massively parallel generic adaptive finite element codes. TOMS 38: 1–28. Available: http://dx.doi.org/10.1145/2049673.2049678.
    Sponsors
    W. Bangerth was partially supported by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST), by a grant from the NSF-funded Computational Infrastructure in Geodynamics initiative, and by an Alfred P. Sloan Research Fellowship. C. Burstedde was partially supported by NSF grants OPP-0941678, OCI-0749334, DMS-0724746, AFOSR grant FA9550-09-1-0608, and DOE grants DE-SC0002710 and DEFC02-06ER25782. T. Heister was partially supported by the German Research Foundation (DFG) through Research Training Group GK 1023. M. Kronbichler was supported by the Graduate School in Mathematics and Computation (FMB). Most of the work was performed while T. Heister and M. Kronbichler were visitors at Texas A&M University.Some computations for this article were performed on the "Ranger" cluster at the Texas Advanced Computing Center (TACC), and the "Brazos" and "Hurr" clusters at the Institute for Applied Mathematics and Computational Science (IAMCS) at Texas A&M University. Ranger was funded by NSF award OCI-0622780, and the author's used an allocation obtained under NSF award TG-MCA04N026. Part of Brazos was supported by NSF award DMS-0922866. Hurr is supported by Award No. KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Association for Computing Machinery (ACM)
    Journal
    ACM Transactions on Mathematical Software
    DOI
    10.1145/2049673.2049678
    ae974a485f413a2113503eed53cd6c53
    10.1145/2049673.2049678
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.