Show simple item record

dc.contributor.authorAsner, Liya
dc.contributor.authorTavener, Simon
dc.contributor.authorKay, David
dc.date.accessioned2016-02-25T12:40:17Z
dc.date.available2016-02-25T12:40:17Z
dc.date.issued2012-01
dc.identifier.citationAsner L, Tavener S, Kay D (2012) Adjoint-Based a Posteriori Error Estimation for Coupled Time-Dependent Systems. SIAM Journal on Scientific Computing 34: A2394–A2419. Available: http://dx.doi.org/10.1137/110858458.
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.doi10.1137/110858458
dc.identifier.urihttp://hdl.handle.net/10754/597466
dc.description.abstractWe consider time-dependent parabolic problem s coupled across a common interface which we formulate using a Lagrange multiplier construction and solve by applying a monolithic solution technique. We derive an adjoint-based a posteriori error representation for a quantity of interest given by a linear functional of the solution. We establish the accuracy of our error representation formula through numerical experimentation and investigate the effect of error in the adjoint solution. Crucially, the error representation affords a distinction between temporal and spatial errors and can be used as a basis for a blockwise time-space refinement strategy. Numerical tests illustrate the efficacy of the refinement strategy by capturing the distinctive behavior of a localized traveling wave solution. The saddle point systems considered here are equivalent to those arising in the mortar finite element technique for parabolic problems. © 2012 Society for Industrial and Applied Mathematics.
dc.description.sponsorshipThis work was supported in part by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).The first author's work is supported by the Clarendon Fund, University of Oxford, and by the Scatcherd European Scholarship.
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.subjectA posteriori error analysis
dc.subjectAdjoint problem
dc.subjectCoupled problem
dc.subjectMesh refinement
dc.subjectMortar finite elements
dc.titleAdjoint-Based a Posteriori Error Estimation for Coupled Time-Dependent Systems
dc.typeArticle
dc.identifier.journalSIAM Journal on Scientific Computing
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdom
dc.contributor.institutionColorado State University, Fort Collins, United States
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record