• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bonito, Andrea
    DeVore, Ronald A.
    Nochetto, Ricardo H.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/597455
    
    Metadata
    Show full item record
    Abstract
    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
    Citation
    Bonito A, DeVore RA, Nochetto RH (2013) Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients. SIAM J Numer Anal 51: 3106–3134. Available: http://dx.doi.org/10.1137/130905757.
    Sponsors
    Department of Mathematics, Texas A&M University, College Station, TX 77843 (bonito@math.tamu.edu, rdevore@math.tamu.edu). The first author was partially supported by NSF grant DMS-1254618 and ONR grant N000141110712. The second author was partially supported by ONR grants N00014-12-1-0561 and N00014-11-1-0712, NSF grant DMS-12227151, and award KUS-C1-016-04 made by King Abdullah University of Science and Technology (KAUST).Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (rhn@math.umd.edu). This author was partially supported by NSF grant DMS-1109325.
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Numerical Analysis
    DOI
    10.1137/130905757
    ae974a485f413a2113503eed53cd6c53
    10.1137/130905757
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.