• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Adaptive finite element method for shape optimization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Morin, Pedro
    Nochetto, Ricardo H.
    Pauletti, Miguel S.
    Verani, Marco
    Date
    2012-01-16
    Online Publication Date
    2012-01-16
    Print Publication Date
    2012-10
    Permanent link to this record
    http://hdl.handle.net/10754/597454
    
    Metadata
    Show full item record
    Abstract
    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
    Citation
    Morin P, Nochetto RH, Pauletti MS, Verani M (2012) Adaptive finite element method for shape optimization. ESAIM: Control, Optimisation and Calculus of Variations 18: 1122–1149. Available: http://dx.doi.org/10.1051/cocv/2011192.
    Sponsors
    Partially supported by UNL through GRANT CAI+D 062-312, by CONICET through Grant PIP 112-200801-02182, by MinCyT of Argentina through Grant PICT 2008-0622 and by Argentina-Italy bilateral project "Innovative numerical methods for industrial problems with complex and mobile geometries".Partially supported by NSF grants DMS-0505454 and DMS-0807811, and by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).Partially supported by Italian MIUR PRIN 2008 "Analisi e sviluppo di metodi numerici avanzati per EDP" and by Argentina-Italy bilateral project "Innovative numerical methods for industrial problems with complex and mobile geometries".
    Publisher
    EDP Sciences
    Journal
    ESAIM: Control, Optimisation and Calculus of Variations
    DOI
    10.1051/cocv/2011192
    ae974a485f413a2113503eed53cd6c53
    10.1051/cocv/2011192
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.