• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Cotter, Simon L.
    Vejchodský, Tomáš
    Erban, Radek
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/597453
    
    Metadata
    Show full item record
    Abstract
    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.
    Citation
    Cotter SL, Vejchodský T, Erban R (2013) Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems. SIAM Journal on Scientific Computing 35: B107–B131. Available: http://dx.doi.org/10.1137/120877374.
    Sponsors
    Submitted to the journal's Computational Methods in Science and Engineering section May 15, 2012; accepted for publication (in revised form) December 3, 2012; published electronically January 10, 2013. This work was supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 239870 and was based on work supported in part by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom (simon.cotter@manchester.ac.uk). This author's work was partially supported by a Junior Research Fellowship of St Cross College, University of Oxford.Institute of Mathematics, Czech Academy of Sciences, Zitna 25, 115 67 Praha 1, Czech Republic (vejchod@math.cas.cz). This author's work was supported by the Grant Agency of the Academy of Sciences (project IAA100190803) and RVO 67985840.Mathematical Institute, University of Oxford, 24-29 St. Giles', Oxford, OX1 3LB, United Kingdom (erban@maths.ox.ac.uk). This author's work was supported by Somerville College, University of Oxford, by a Fulford Junior Research Fellowship; Brasenose College, University of Oxford, by a Nicholas Kurti Junior Fellowship; the Royal Society for a University Research Fellowship; and the Leverhulme Trust for a Philip Leverhulme Prize. This prize money was used to support research visits of Tomas Vejchodsky in Oxford.
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Scientific Computing
    DOI
    10.1137/120877374
    ae974a485f413a2113503eed53cd6c53
    10.1137/120877374
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.