• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Adaptive approximation of higher order posterior statistics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Lee, Wonjung
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2014-02
    Permanent link to this record
    http://hdl.handle.net/10754/597451
    
    Metadata
    Show full item record
    Abstract
    Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc.
    Citation
    Lee W (2014) Adaptive approximation of higher order posterior statistics. Journal of Computational Physics 258: 833–855. Available: http://dx.doi.org/10.1016/j.jcp.2013.11.015.
    Sponsors
    The author thanks Dr. Chris Farmer for helpful discussions and suggestions. The author also thanks King Abdullah University of Science and Technology (KAUST) Award No. KUK-C1-013-04 for its financial support of this research.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational Physics
    DOI
    10.1016/j.jcp.2013.11.015
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcp.2013.11.015
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.