Show simple item record

dc.contributor.authorRosen, Paul
dc.date.accessioned2016-02-25T12:33:12Z
dc.date.available2016-02-25T12:33:12Z
dc.date.issued2013-07-01
dc.identifier.citationRosen P (2013) A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels. Computer Graphics Forum 32: 161–170. Available: http://dx.doi.org/10.1111/cgf.12103.
dc.identifier.issn0167-7055
dc.identifier.doi10.1111/cgf.12103
dc.identifier.urihttp://hdl.handle.net/10754/597436
dc.description.abstractWe present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.
dc.description.sponsorshipWe thank Kristi Potter for her feedback. This work was supported by DOE NETL and KAUST award KUS-C1-016-04.
dc.publisherWiley
dc.titleA Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels
dc.typeArticle
dc.identifier.journalComputer Graphics Forum
dc.contributor.institutionUniversity of Utah, Salt Lake City, United States
kaust.grant.numberKUS-C1-016-04
dc.date.published-online2013-07-01
dc.date.published-print2013-06


This item appears in the following Collection(s)

Show simple item record