Show simple item record

dc.contributor.authorGhosh, Subir
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorSukhovatkin, Vlad
dc.contributor.authorLevina, Larissa
dc.contributor.authorSargent, Edward H.
dc.date.accessioned2016-02-25T12:33:02Z
dc.date.available2016-02-25T12:33:02Z
dc.date.issued2011-09-06
dc.identifier.citationGhosh S, Hoogland S, Sukhovatkin V, Levina L, Sargent EH (2011) A tunable colloidal quantum dot photo field-effect transistor. Applied Physics Letters 99: 101102. Available: http://dx.doi.org/10.1063/1.3636438.
dc.identifier.issn0003-6951
dc.identifier.doi10.1063/1.3636438
dc.identifier.urihttp://hdl.handle.net/10754/597428
dc.description.abstractWe fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.
dc.description.sponsorshipThis publication is based in part on work supported by an award (No. KUS-11-009-21) made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellent Program, by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Angstrom Engineering and Innovative Technology. We acknowledge the assistance of Dr. Ratan Debnath and Dr. Xihua Wang.
dc.publisherAIP Publishing
dc.titleA tunable colloidal quantum dot photo field-effect transistor
dc.typeArticle
dc.identifier.journalApplied Physics Letters
dc.contributor.institutionUniversity of Toronto, Toronto, Canada
kaust.grant.numberKUS-11-009-21
dc.date.published-online2011-09-06
dc.date.published-print2011-09-05


This item appears in the following Collection(s)

Show simple item record