• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Fang cc
    Liu, Jia
    Yang, Wulin
    Logan, Bruce E.
    KAUST Grant Number
    KUS-I1-003-13
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/597425
    
    Metadata
    Show full item record
    Abstract
    © 2015 The Royal Society of Chemistry. Thermal energy was shown to be efficiently converted into electrical power in a thermally regenerative ammonia-based battery (TRAB) using copper-based redox couples [Cu(NH3)4 2+/Cu and Cu(ii)/Cu]. Ammonia addition to the anolyte (2 M ammonia in a copper-nitrate electrolyte) of a single TRAB cell produced a maximum power density of 115 ± 1 W m-2 (based on projected area of a single copper mesh electrode), with an energy density of 453 W h m-3 (normalized to the total electrolyte volume, under maximum power production conditions). Adding a second cell doubled both the voltage and maximum power. Increasing the anolyte ammonia concentration to 3 M further improved the maximum power density to 136 ± 3 W m-2. Volatilization of ammonia from the spent anolyte by heating (simulating distillation), and re-addition of this ammonia to the spent catholyte chamber with subsequent operation of this chamber as the anode (to regenerate copper on the other electrode), produced a maximum power density of 60 ± 3 W m-2, with an average discharge energy efficiency of ∼29% (electrical energy captured versus chemical energy in the starting solutions). Power was restored to 126 ± 5 W m-2 through acid addition to the regenerated catholyte to decrease pH and dissolve Cu(OH)2 precipitates, suggesting that an inexpensive acid or a waste acid could be used to improve performance. These results demonstrated that TRABs using ammonia-based electrolytes and inexpensive copper electrodes can provide a practical method for efficient conversion of low-grade thermal energy into electricity.
    Citation
    Zhang F, Liu J, Yang W, Logan BE (2015) A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Environ Sci 8: 343–349. Available: http://dx.doi.org/10.1039/c4ee02824d.
    Sponsors
    The authors thank David Jones for help with the analytical measurements. We also thank Nicole LaBarge for the HYSYS simulation, Dr Marta Hatzell, Dr Mike Hickner and Dr Christopher Gorski for useful discussions. This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Energy & Environmental Science
    DOI
    10.1039/c4ee02824d
    ae974a485f413a2113503eed53cd6c53
    10.1039/c4ee02824d
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.