• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A symmetric positive definite formulation for monolithic fluid structure interaction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Robinson-Mosher, Avi
    Schroeder, Craig
    Fedkiw, Ronald
    KAUST Grant Number
    42959
    Date
    2011-02
    Permanent link to this record
    http://hdl.handle.net/10754/597419
    
    Metadata
    Show full item record
    Abstract
    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.
    Citation
    Robinson-Mosher A, Schroeder C, Fedkiw R (2011) A symmetric positive definite formulation for monolithic fluid structure interaction. Journal of Computational Physics 230: 1547–1566. Available: http://dx.doi.org/10.1016/j.jcp.2010.11.021.
    Sponsors
    Research supported in part by a Packard Foundation Fellowship, an Okawa Foundation Research Grant, ONR N0014-06-1-0393, ONR N00014-06-1-0505, ONR N00014-05-1-0479 for a computing cluster, NIH U54-GM072970, NSF ACI-0323866, NSF IIS-0326388, and King Abdullah University of Science and Technology (KAUST) 42959. C.S. was supported in part by a Stanford Graduate Fellowship.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational Physics
    DOI
    10.1016/j.jcp.2010.11.021
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcp.2010.11.021
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.