A stochastic model for transmission, extinction and outbreak of Escherichia coli O157:H7 in cattle as affected by ambient temperature and cleaning practices
Type
ArticleKAUST Grant Number
KUS-C1-016-04Date
2013-07-18Online Publication Date
2013-07-18Print Publication Date
2014-08Permanent link to this record
http://hdl.handle.net/10754/597413
Metadata
Show full item recordAbstract
Many infectious agents transmitting through a contaminated environment are able to persist in the environment depending on the temperature and sanitation determined rates of their replication and clearance, respectively. There is a need to elucidate the effect of these factors on the infection transmission dynamics in terms of infection outbreaks and extinction while accounting for the random nature of the process. Also, it is important to distinguish between the true and apparent extinction, where the former means pathogen extinction in both the host and the environment while the latter means extinction only in the host population. This study proposes a stochastic-differential equation model as an approximation to a Markov jump process model, using Escherichia coli O157:H7 in cattle as a model system. In the model, the host population infection dynamics are described using the standard susceptible-infected-susceptible framework, and the E. coli O157:H7 population in the environment is represented by an additional variable. The backward Kolmogorov equations that determine the probability distribution and the expectation of the first passage time are provided in a general setting. The outbreak and apparent extinction of infection are investigated by numerically solving the Kolmogorov equations for the probability density function of the associated process and the expectation of the associated stopping time. The results provide insight into E. coli O157:H7 transmission and apparent extinction, and suggest ways for controlling the spread of infection in a cattle herd. Specifically, this study highlights the importance of ambient temperature and sanitation, especially during summer. © 2013 Springer-Verlag Berlin Heidelberg.Citation
Wang X, Gautam R, Pinedo PJ, Allen LJS, Ivanek R (2013) A stochastic model for transmission, extinction and outbreak of Escherichia coli O157:H7 in cattle as affected by ambient temperature and cleaning practices. Journal of Mathematical Biology 69: 501–532. Available: http://dx.doi.org/10.1007/s00285-013-0707-1.Sponsors
We thank three anonymous referees and the editor for their suggestions that improved this paper. This work was supported by the National Science Foundation grant NSF-EF-0913367 to RI funded under the American Recovery and Reinvestment Act of 2009. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This publication is based in part on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).Publisher
Springer NatureJournal
Journal of Mathematical BiologyPubMed ID
23864122ae974a485f413a2113503eed53cd6c53
10.1007/s00285-013-0707-1
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd.
- Authors: Gautam R, Bani-Yaghoub M, Neill WH, Döpfer D, Kaspar C, Ivanek R
- Issue date: 2011 Oct 1
- Assessing the effect of interventions on the risk of cattle and sheep carrying Escherichia coli O157:H7 to the abattoir using a stochastic model.
- Authors: Stacey KF, Parsons DJ, Christiansen KH, Burton CH
- Issue date: 2007 Apr 16
- Escherichia coli O157 infection on Scottish cattle farms: dynamics and control.
- Authors: Zhang XS, Woolhouse ME
- Issue date: 2011 Jul 6
- Perspectives on super-shedding of Escherichia coli O157:H7 by cattle.
- Authors: Munns KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA
- Issue date: 2015 Feb
- A two-dose regimen of a vaccine against type III secreted proteins reduced Escherichia coli O157:H7 colonization of the terminal rectum in beef cattle in commercial feedlots.
- Authors: Smith DR, Moxley RA, Peterson RE, Klopfenstein TJ, Erickson GE, Bretschneider G, Berberov EM, Clowser S
- Issue date: 2009 Mar