• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A scalable method for parallelizing sampling-based motion planning algorithms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Jacobs, Sam Ade
    Manavi, Kasra
    Burgos, Juan
    Denny, Jory
    Thomas, Shawna
    Amato, Nancy M.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2012-05
    Permanent link to this record
    http://hdl.handle.net/10754/597399
    
    Metadata
    Show full item record
    Abstract
    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.
    Citation
    Jacobs SA, Manavi K, Burgos J, Denny J, Thomas S, et al. (2012) A scalable method for parallelizing sampling-based motion planning algorithms. 2012 IEEE International Conference on Robotics and Automation. Available: http://dx.doi.org/10.1109/ICRA.2012.6225334.
    Sponsors
    This research supported in part by NSF awards: CRI-0551685, CCF-0833199, CCF-0830753, IIS-096053, IIS-0917266, NSF/DNDO award2008-DN-077-ARI018-02, by the DOE NNSA under the Predictive ScienceAcademic Alliances Program grant DE-FC52-08NA28616, by THECBNHARP award 000512-0097-2009, by Chevron, IBM, Intel, Oracle/Sun andby Award KUS-C1-016-04, made by King Abdullah University of Scienceand Technology (KAUST). This research used resources of the NationalEnergy Research Scientific Computing Center, which is supported by theOffice of Science of the U.S. Department of Energy under Contract No.DE-AC02-05CH11231.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2012 IEEE International Conference on Robotics and Automation
    DOI
    10.1109/ICRA.2012.6225334
    ae974a485f413a2113503eed53cd6c53
    10.1109/ICRA.2012.6225334
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.