A one-level FETI method for the drift–diffusion-Poisson system with discontinuities at an interface
Type
ArticleDate
2013-06Permanent link to this record
http://hdl.handle.net/10754/597364
Metadata
Show full item recordAbstract
A 3d feti method for the drift-diffusion-Poisson system including discontinuities at a 2d interface is developed. The motivation for this work is to provide a parallel numerical algorithm for a system of PDEs that are the basic model equations for the simulation of semiconductor devices such as transistors and sensors. Moreover, discontinuities or jumps in the potential and its normal derivative at a 2d surface are included for the simulation of nanowire sensors based on a homogenized model. Using the feti method, these jump conditions can be included with the usual numerical properties and the original Farhat-Roux feti method is extended to the drift-diffusion-Poisson equations including discontinuities. We show two numerical examples. The first example verifies the correct implementation including the discontinuities on a 2d grid divided into eight subdomains. The second example is 3d and shows the application of the algorithm to the simulation of nanowire sensors with high aspect ratios. The Poisson-Boltzmann equation and the drift-diffusion-Poisson system with jump conditions are solved on a 3d grid with real-world boundary conditions. © 2013 Elsevier Inc..Citation
Baumgartner S, Heitzinger C (2013) A one-level FETI method for the drift–diffusion-Poisson system with discontinuities at an interface. Journal of Computational Physics 243: 74–86. Available: http://dx.doi.org/10.1016/j.jcp.2013.02.043.Sponsors
The authors acknowledge support by the FWF (Austrian Science Fund) project No. P20871-N13 and by the WWTF (Viennese Science and Technology Fund) project No. MA09-028. This publication is based on work supported by Award No. KUK-I1- 007-43, funded by the King Abdullah University of Science and Technology (KAUST).Publisher
Elsevier BVJournal
Journal of Computational Physicsae974a485f413a2113503eed53cd6c53
10.1016/j.jcp.2013.02.043