Show simple item record

dc.contributor.authorWalter, Claudia
dc.contributor.authorBarg, Suelen
dc.contributor.authorNi, Na
dc.contributor.authorMaher, Robert C.
dc.contributor.authorGarcίa-Tuñón, Esther
dc.contributor.authorZaiviji Ismail, Muhammad Muzzafar
dc.contributor.authorBabot, Flora
dc.contributor.authorSaiz, Eduardo
dc.date.accessioned2016-02-25T12:31:28Z
dc.date.available2016-02-25T12:31:28Z
dc.date.issued2013-11
dc.identifier.citationWalter C, Barg S, Ni N, Maher RC, Garcίa-Tuñón E, et al. (2013) A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society 33: 2365–2374. Available: http://dx.doi.org/10.1016/j.jeurceramsoc.2013.04.024.
dc.identifier.issn0955-2219
dc.identifier.doi10.1016/j.jeurceramsoc.2013.04.024
dc.identifier.urihttp://hdl.handle.net/10754/597357
dc.description.abstractThis paper describes the fabrication of hybrid ceramic/carbon scaffolds in which carbon nanofibres and multi-walled carbon nanotubes fully cover the internal walls of a microporous ceramic structure that provides mechanical stability. Freeze casting is used to fabricate a porous, lamellar ceramic (Al2O3) structure with aligned pores whose width can be controlled between 10 and 90μm. Subsequently, a two step chemical vapour deposition process that uses iron as a catalyst is used to grow the carbon nanostructures inside the scaffold. This catalyst remains in the scaffold after the growth process. The formation of the alumina scaffold and the influence of its structure on the growth of nanofibres and tubes are investigated. A set of growth conditions is determined to produce a dense covering of the internal walls of the porous ceramic with the carbon nanostructures. The limiting pore size for this process is located around 25μm. © 2013 Elsevier Ltd.
dc.description.sponsorshipThe authors would like to thank Gary Stakalls and Leroy Grey for technical assistance, a grant from the Army Engineer Research and Development Centre International Research Office (contract no: W911NF-10-1-0438), and EPSRC Science and Innovation Grant Building New Capability in Structural Ceramics (EP/F033605/1) for funding, and Dr. Charles R. Welch for comments on the manuscript. RCM is grateful for funding Award No KUK-F1-020-21, made by King Abdullah, University of Science and Technology (KAUST). SB and ES would like to thank the European Commission (FP7 programme) for the funding (Intra-European Marie Curie Fellowship ACIN and reintegration grant BISM). NN would like to thank the UK Engineering and Physical Sciences Research Council for the funding (EPSRC Doctoral Prize Fellowship).
dc.publisherElsevier BV
dc.subjectCarbon nanotubes
dc.subjectCeramics
dc.subjectCVD
dc.subjectFreeze casting
dc.subjectScaffold
dc.titleA novel approach for the fabrication of carbon nanofibre/ceramic porous structures
dc.typeArticle
dc.identifier.journalJournal of the European Ceramic Society
dc.contributor.institutionImperial College London, London, United Kingdom
kaust.grant.numberKUK-F1-020-21


This item appears in the following Collection(s)

Show simple item record