• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A new class of massively parallel direction splitting for the incompressible Navier–Stokes equations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Guermond, J.L.
    Minev, P.D.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2011-06
    Permanent link to this record
    http://hdl.handle.net/10754/597336
    
    Metadata
    Show full item record
    Abstract
    We introduce in this paper a new direction splitting algorithm for solving the incompressible Navier-Stokes equations. The main originality of the method consists of using the operator (I-∂xx)(I-∂yy)(I-∂zz) for approximating the pressure correction instead of the Poisson operator as done in all the contemporary projection methods. The complexity of the proposed algorithm is significantly lower than that of projection methods, and it is shown the have the same stability properties as the Poisson-based pressure-correction techniques, either in standard or rotational form. The first-order (in time) version of the method is proved to have the same convergence properties as the classical first-order projection techniques. Numerical tests reveal that the second-order version of the method has the same convergence rate as its second-order projection counterpart as well. The method is suitable for parallel implementation and preliminary tests show excellent parallel performance on a distributed memory cluster of up to 1024 processors. The method has been validated on the three-dimensional lid-driven cavity flow using grids composed of up to 2×109 points. © 2011 Elsevier B.V.
    Citation
    Guermond JL, Minev PD (2011) A new class of massively parallel direction splitting for the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering 200: 2083–2093. Available: http://dx.doi.org/10.1016/j.cma.2011.02.007.
    Sponsors
    This publication is based on work partially supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).The work of this author is also supported by fellowships from the Institute of Applied Mathematics and Computational Science and the Institute of Scientific Computing at Texas A&M University, and a Discovery grant of NSERC.
    Publisher
    Elsevier BV
    Journal
    Computer Methods in Applied Mechanics and Engineering
    DOI
    10.1016/j.cma.2011.02.007
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cma.2011.02.007
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.