Show simple item record

dc.contributor.authorWheeler, Mary Fanett
dc.contributor.authorXue, Guangri
dc.contributor.authorYotov, Ivan
dc.date.accessioned2016-02-25T12:30:46Z
dc.date.available2016-02-25T12:30:46Z
dc.date.issued2012-02-03
dc.identifier.citationWheeler MF, Xue G, Yotov I (2012) A multiscale mortar multipoint flux mixed finite element method. ESAIM: Mathematical Modelling and Numerical Analysis 46: 759–796. Available: http://dx.doi.org/10.1051/m2an/2011064.
dc.identifier.issn0764-583X
dc.identifier.issn1290-3841
dc.identifier.doi10.1051/m2an/2011064
dc.identifier.urihttp://hdl.handle.net/10754/597327
dc.description.abstractIn this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
dc.description.sponsorshippartially supported by the NSF-CDI under contract number DMS 0835745, the DOE grant DE-FGO2-04ER25617, and the Center for Frontiers of Subsurface Energy Security under Contract No. DE-SC0001114.supported by Award No. KUS-F1-032-04, made by King Abdullah University of Science and Technology (KAUST).partially supported by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0813901, and the J. Tinsley Oden Faculty Fellowship, ICES, The University of Texas at Austin.
dc.publisherEDP Sciences
dc.subjectCell-centered finite difference
dc.subjectFull tensor coefficient
dc.subjectHexahedra
dc.subjectMixed finite element
dc.subjectMortar finite element
dc.subjectMultiblock
dc.subjectMultipoint flux approximation
dc.subjectMultiscale
dc.subjectNonmatching grids
dc.subjectQuadrilaterals
dc.titleA multiscale mortar multipoint flux mixed finite element method
dc.typeArticle
dc.identifier.journalESAIM: Mathematical Modelling and Numerical Analysis
dc.contributor.institutionUniversity of Texas at Austin, Austin, United States
dc.contributor.institutionUniversity of Pittsburgh, Pittsburgh, United States
kaust.grant.numberKUS-F1-032-04


This item appears in the following Collection(s)

Show simple item record