Type
ArticleKAUST Grant Number
KUS-F1-032-04Date
2012-02-03Online Publication Date
2012-02-03Print Publication Date
2012-07Permanent link to this record
http://hdl.handle.net/10754/597327
Metadata
Show full item recordAbstract
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.Citation
Wheeler MF, Xue G, Yotov I (2012) A multiscale mortar multipoint flux mixed finite element method. ESAIM: Mathematical Modelling and Numerical Analysis 46: 759–796. Available: http://dx.doi.org/10.1051/m2an/2011064.Sponsors
partially supported by the NSF-CDI under contract number DMS 0835745, the DOE grant DE-FGO2-04ER25617, and the Center for Frontiers of Subsurface Energy Security under Contract No. DE-SC0001114.supported by Award No. KUS-F1-032-04, made by King Abdullah University of Science and Technology (KAUST).partially supported by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0813901, and the J. Tinsley Oden Faculty Fellowship, ICES, The University of Texas at Austin.Publisher
EDP Sciencesae974a485f413a2113503eed53cd6c53
10.1051/m2an/2011064