• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A mathematical model of tumor–immune interactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Robertson-Tessi, Mark
    El-Kareh, Ardith
    Goriely, Alain cc
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2012-02
    Permanent link to this record
    http://hdl.handle.net/10754/597300
    
    Metadata
    Show full item record
    Abstract
    A mathematical model of the interactions between a growing tumor and the immune system is presented. The equations and parameters of the model are based on experimental and clinical results from published studies. The model includes the primary cell populations involved in effector T-cell mediated tumor killing: regulatory T cells, helper T cells, and dendritic cells. A key feature is the inclusion of multiple mechanisms of immunosuppression through the main cytokines and growth factors mediating the interactions between the cell populations. Decreased access of effector cells to the tumor interior with increasing tumor size is accounted for. The model is applied to tumors with different growth rates and antigenicities to gauge the relative importance of various immunosuppressive mechanisms. The most important factors leading to tumor escape are TGF-Β-induced immunosuppression, conversion of helper T cells into regulatory T cells, and the limitation of immune cell access to the full tumor at large tumor sizes. The results suggest that for a given tumor growth rate, there is an optimal antigenicity maximizing the response of the immune system. Further increases in antigenicity result in increased immunosuppression, and therefore a decrease in tumor killing rate. This result may have implications for immunotherapies which modulate the effective antigenicity. Simulation of dendritic cell therapy with the model suggests that for some tumors, there is an optimal dose of transfused dendritic cells. © 2011 Elsevier Ltd.
    Citation
    Robertson-Tessi M, El-Kareh A, Goriely A (2012) A mathematical model of tumor–immune interactions. Journal of Theoretical Biology 294: 56–73. Available: http://dx.doi.org/10.1016/j.jtbi.2011.10.027.
    Sponsors
    This publication is based on the work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST), and for based in part on the work supported by the National Science Foundation under grants DMS-0907773 (AG). AG is a Wolfson/Royal Society Merit Award Holder. This publication is based on the work supported by the ARCS Foundation, NSF-VIGRE, and the BIO5 Institute at the University of Arizona (MRT).
    Publisher
    Elsevier BV
    Journal
    Journal of Theoretical Biology
    DOI
    10.1016/j.jtbi.2011.10.027
    PubMed ID
    22051568
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jtbi.2011.10.027
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.