• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A gradient stable scheme for a phase field model for the moving contact line problem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gao, Min
    Wang, Xiao-Ping
    KAUST Grant Number
    SA-C0040/UK-C0016
    Date
    2012-02
    Permanent link to this record
    http://hdl.handle.net/10754/597280
    
    Metadata
    Show full item record
    Abstract
    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.
    Citation
    Gao M, Wang X-P (2012) A gradient stable scheme for a phase field model for the moving contact line problem. Journal of Computational Physics 231: 1372–1386. Available: http://dx.doi.org/10.1016/j.jcp.2011.10.015.
    Sponsors
    This publication was based on work supported in part by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST), Hong Kong RGC-GRF Grants 603107, 604209 and the National Basic Research Program Project of China under project 2009CB623200. Min Gao is a Ph.D. student under HKUST-Shanghai Jiaotong University collaboration program.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational Physics
    DOI
    10.1016/j.jcp.2011.10.015
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcp.2011.10.015
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.