• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A Data-Driven Approach to Realistic Shape Morphing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gao, Lin
    Lai, Yu-Kun
    Huang, Qi-Xing
    Hu, Shi-Min
    Date
    2013-05-06
    Online Publication Date
    2013-05-06
    Print Publication Date
    2013-05
    Permanent link to this record
    http://hdl.handle.net/10754/597249
    
    Metadata
    Show full item record
    Abstract
    Morphing between 3D objects is a fundamental technique in computer graphics. Traditional methods of shape morphing focus on establishing meaningful correspondences and finding smooth interpolation between shapes. Such methods however only take geometric information as input and thus cannot in general avoid producing unnatural interpolation, in particular for large-scale deformations. This paper proposes a novel data-driven approach for shape morphing. Given a database with various models belonging to the same category, we treat them as data samples in the plausible deformation space. These models are then clustered to form local shape spaces of plausible deformations. We use a simple metric to reasonably represent the closeness between pairs of models. Given source and target models, the morphing problem is casted as a global optimization problem of finding a minimal distance path within the local shape spaces connecting these models. Under the guidance of intermediate models in the path, an extended as-rigid-as-possible interpolation is used to produce the final morphing. By exploiting the knowledge of plausible models, our approach produces realistic morphing for challenging cases as demonstrated by various examples in the paper. © 2013 The Eurographics Association and Blackwell Publishing Ltd.
    Citation
    Gao L, Lai Y-K, Huang Q-X, Hu S-M (2013) A Data-Driven Approach to Realistic Shape Morphing. Computer Graphics Forum 32: 449–457. Available: http://dx.doi.org/10.1111/cgf.12065.
    Sponsors
    We would like to thank Jia-Jia Sun for his help with experiments. This work was supported by the National Basic Research Project of China (Project Number 2011CB302202), the Natural Science Foundation of China (Project Number 61120106007), the National High Technology Research and Development Program of China (Project Number 2012AA011801) and National Significant Science and Technology Program (Project Number 2012ZX01039001-003). Qi-Xing Huang is supported by NSF grants FODA-VA (Project Number 808515) and CCF (Project Number 1011228), the KAUST Academic Excellence Alliance, and a Google Research Award.
    Publisher
    Wiley
    Journal
    Computer Graphics Forum
    DOI
    10.1111/cgf.12065
    ae974a485f413a2113503eed53cd6c53
    10.1111/cgf.12065
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.