• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Fowkes, Jaroslav M.
    Gould, Nicholas I. M.
    Farmer, Chris L.
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2012-06-21
    Online Publication Date
    2012-06-21
    Print Publication Date
    2013-08
    Permanent link to this record
    http://hdl.handle.net/10754/597224
    
    Metadata
    Show full item record
    Abstract
    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.
    Citation
    Fowkes JM, Gould NIM, Farmer CL (2012) A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions. J Glob Optim 56: 1791–1815. Available: http://dx.doi.org/10.1007/s10898-012-9937-9.
    Sponsors
    We would like to thank Coralia Cartis for helpful suggestions on an early draft of thispaper. We would also like to thank an anonymous referee for positive comments and revisions which havehelped improve the paper. This research was supported through an EPSRC Industrial CASE studentship inconjunction with Schlumberger. The work of Nick Gould was supported by the EPSRC grants EP/E053351/1,EP/F005369/1 and EP/I013067/1. This publication was also based on work supported in part by Award NoKUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST) (CLF).
    Publisher
    Springer Nature
    Journal
    Journal of Global Optimization
    DOI
    10.1007/s10898-012-9937-9
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10898-012-9937-9
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.