Show simple item record

dc.contributor.authorKwiatkowski, Joe J.
dc.contributor.authorJimison, Leslie H.
dc.contributor.authorSalleo, Alberto
dc.contributor.authorSpakowitz, Andrew J.
dc.date.accessioned2016-02-25T12:28:17Z
dc.date.available2016-02-25T12:28:17Z
dc.date.issued2011
dc.identifier.citationKwiatkowski JJ, Jimison LH, Salleo A, Spakowitz AJ (2011) A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films. Journal of Applied Physics 109: 113720. Available: http://dx.doi.org/10.1063/1.3594686.
dc.identifier.issn0021-8979
dc.identifier.doi10.1063/1.3594686
dc.identifier.urihttp://hdl.handle.net/10754/597222
dc.description.abstractWe present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.
dc.description.sponsorshipThis publication was partially based on work supported by the Center for Advanced Molecular Photovoltaics (Award No KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST) and the National Science Foundation. L.H.J. acknowledges financial support from Toshiba Corporation. J.J.K. and A.J.S. are partially supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515.
dc.publisherAIP Publishing
dc.titleA Boltzmann-weighted hopping model of charge transport in organic semicrystalline films
dc.typeArticle
dc.identifier.journalJournal of Applied Physics
dc.contributor.institutionStanford University, Palo Alto, United States
kaust.grant.numberKUS-C1-015-21
kaust.grant.fundedcenterCenter for Advanced Molecular Photovoltaics (CAMP)


This item appears in the following Collection(s)

Show simple item record