New approaches to the modelling of multi-component fuel droplet heating and evaporation
Type
Conference PaperDate
2015-02-25Online Publication Date
2015-02-25Print Publication Date
2015-02-25Permanent link to this record
http://hdl.handle.net/10754/597109
Metadata
Show full item recordAbstract
The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.Citation
New approaches to the modelling of multi-component fuel droplet heating and evaporation 2015, 585:012014 Journal of Physics: Conference SeriesSponsors
The authors are grateful to the European Regional Development Fund Franco-British INTERREG IVA (Project C5, Reference 4005) and EPSRC (grant EP/H001603/1) for financial support of the work on this project.Publisher
IOP PublishingConference/Event name
6th International Workshop on Multi-Rate Processes and Hysteresis, MURPHYS 2012Additional Links
http://stacks.iop.org/1742-6596/585/i=1/a=012014?key=crossref.c90b2dc902182eb22469c474c2f35075ae974a485f413a2113503eed53cd6c53
10.1088/1742-6596/585/1/012014