Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.
Type
ArticleAuthors
Kim, Jin YoungAdinolfi, Valerio
Sutherland, Brandon R
Voznyy, Oleksandr

Kwon, S Joon
Kim, Tae Wu
Kim, Jeongho
Ihee, Hyotcherl
Kemp, Kyle
Adachi, Michael
Yuan, Mingjian
Kramer, Illan J.

Zhitomirsky, David
Hoogland, Sjoerd
Sargent, Edward H.

KAUST Grant Number
KUS-11-009-21Date
2015-07-13Online Publication Date
2015-07-13Print Publication Date
2015-12Permanent link to this record
http://hdl.handle.net/10754/596815
Metadata
Show full item recordAbstract
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.Citation
Kim JY, Adinolfi V, Sutherland BR, Voznyy O, Kwon SJ, et al. (2015) Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nat Comms 6: 7772. Available: http://dx.doi.org/10.1038/ncomms8772.Sponsors
This publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. This work was supported by the Korean Government through the New and Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by MOTIE (No.20133030011320) and by KIST through Institutional Project (2E25411). This work was supported by IBS-R004-G2. J.Y.K. extends appreciation for an NSERC Banting postdoctoral fellowship. We thank E. Palmiano, L. Levina, R. Wolowiec and D. Kopilovic for their help during the course of the study.Publisher
Springer NatureJournal
Nature CommunicationsPubMed ID
26165185PubMed Central ID
PMC4510961ae974a485f413a2113503eed53cd6c53
10.1038/ncomms8772
Scopus Count
Collections
Publications Acknowledging KAUST Support
Except where otherwise noted, this item's license is described as This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
Related articles
- Efficient Luminescence from Perovskite Quantum Dot Solids.
- Authors: Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira AF, Sargent EH
- Issue date: 2015 Nov 18
- Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
- Authors: Dang C, Lee J, Breen C, Steckel JS, Coe-Sullivan S, Nurmikko A
- Issue date: 2012 Apr 29
- Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.
- Authors: Balazs DM, Rizkia N, Fang HH, Dirin DN, Momand J, Kooi BJ, Kovalenko MV, Loi MA
- Issue date: 2018 Feb 14
- Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
- Authors: Mendes MJ, Hernández E, López E, García-Linares P, Ramiro I, Artacho I, Antolín E, Tobías I, Martí A, Luque A
- Issue date: 2013 Aug 30
- Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films.
- Authors: Zhang J, Li Q, Di X, Liu Z, Xu G
- Issue date: 2008 Oct 29