A higher-order numerical framework for stochastic simulation of chemical reaction systems.
Type
ArticleKAUST Grant Number
KUK-C1-013-04Date
2012-12-20Online Publication Date
2012-12-20Print Publication Date
2012Permanent link to this record
http://hdl.handle.net/10754/596756
Metadata
Show full item recordAbstract
BACKGROUND: In this paper, we present a framework for improving the accuracy of fixed-step methods for Monte Carlo simulation of discrete stochastic chemical kinetics. Stochasticity is ubiquitous in many areas of cell biology, for example in gene regulation, biochemical cascades and cell-cell interaction. However most discrete stochastic simulation techniques are slow. We apply Richardson extrapolation to the moments of three fixed-step methods, the Euler, midpoint and θ-trapezoidal τ-leap methods, to demonstrate the power of stochastic extrapolation. The extrapolation framework can increase the order of convergence of any fixed-step discrete stochastic solver and is very easy to implement; the only condition for its use is knowledge of the appropriate terms of the global error expansion of the solver in terms of its stepsize. In practical terms, a higher-order method with a larger stepsize can achieve the same level of accuracy as a lower-order method with a smaller one, potentially reducing the computational time of the system. RESULTS: By obtaining a global error expansion for a general weak first-order method, we prove that extrapolation can increase the weak order of convergence for the moments of the Euler and the midpoint τ-leap methods, from one to two. This is supported by numerical simulations of several chemical systems of biological importance using the Euler, midpoint and θ-trapezoidal τ-leap methods. In almost all cases, extrapolation results in an improvement of accuracy. As in the case of ordinary and stochastic differential equations, extrapolation can be repeated to obtain even higher-order approximations. CONCLUSIONS: Extrapolation is a general framework for increasing the order of accuracy of any fixed-step stochastic solver. This enables the simulation of complicated systems in less time, allowing for more realistic biochemical problems to be solved.Citation
Székely T, Burrage K, Erban R, Zygalakis KC (2012) A higher-order numerical framework for stochastic simulation of chemical reaction systems. BMC Syst Biol 6: 85. Available: http://dx.doi.org/10.1186/1752-0509-6-85.Sponsors
TSz is supported by the Engineering and Physical Sciences Research Council through the Systems Biology Doctoral Training Centre, University of Oxford. This publication was based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) /ERC grant agreement No. 239870. RE would also like to thank Somerville College, University of Oxford, for a Fulford Junior Research Fellowship; Brasenose College, University of Oxford, for a Nicholas Kurti Junior Fellowship; the Royal Society for a University Research Fellowship; and the Leverhulme Trust for a Philip Leverhulme Prize. TSz would like to thank Manuel Barrio for his discussions and help with the simulations. KCZ would like to thank James Lottes for his invaluable comments regarding the global error expansion.Publisher
Springer NatureJournal
BMC Systems BiologyPubMed ID
23256696PubMed Central ID
PMC3529698ae974a485f413a2113503eed53cd6c53
10.1186/1752-0509-6-85
Scopus Count
Collections
Publications Acknowledging KAUST Support
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Related articles
- Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method.
- Authors: Székely T Jr, Burrage K, Zygalakis KC, Barrio M
- Issue date: 2014 Jun 18
- A weak second order tau-leaping method for chemical kinetic systems.
- Authors: Hu Y, Li T, Min B
- Issue date: 2011 Jul 14
- Stochastic linear multistep methods for the simulation of chemical kinetics.
- Authors: Barrio M, Burrage K, Burrage P
- Issue date: 2015 Feb 14
- A data-integrated method for analyzing stochastic biochemical networks.
- Authors: Chevalier MW, El-Samad H
- Issue date: 2011 Dec 7
- Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
- Authors: Beentjes CHL, Baker RE
- Issue date: 2019 Aug