Show simple item record

dc.contributor.authorRöthig, Till
dc.contributor.authorOchsenkuhn, Michael A.
dc.contributor.authorRoik, Anna Krystyna
dc.contributor.authorVan Der Merwe, Riaan
dc.contributor.authorVoolstra, Christian R.
dc.date.accessioned2016-02-09T13:45:48Z
dc.date.available2016-02-09T13:45:48Z
dc.date.issued2016-03-01
dc.identifier.citationLong-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome 2016:n/a Molecular Ecology
dc.identifier.issn09621083
dc.identifier.pmid26840035
dc.identifier.doi10.1111/mec.13567
dc.identifier.urihttp://hdl.handle.net/10754/595957
dc.description.abstractScleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater runoff, and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration, and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae, and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulfur oxidation, and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.
dc.language.isoen
dc.publisherWiley
dc.relation.urlhttp://doi.wiley.com/10.1111/mec.13567
dc.rightsThis is the peer reviewed version of the following article: Röthig, T., Ochsenkühn, M. A., Roik, A., van der Merwe, R. and Voolstra, C. R. (2016), Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol. Accepted Author Manuscript. doi:10.1111/mec.13567, which has been published in final form at http://doi.wiley.com/10.1111/mec.13567. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
dc.titleLong-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome
dc.typeArticle
dc.contributor.departmentBiological & Organometallic Catalysis Laboratories
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentMarine Science Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentRed Sea Research Center (RSRC)
dc.contributor.departmentReef Genomics Lab
dc.identifier.journalMolecular Ecology
dc.eprint.versionPost-print
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personRöthig, Till
kaust.personOchsenkuhn, Michael A.
kaust.personRoik, Anna Krystyna
kaust.personVan Der Merwe, Riaan
kaust.personVoolstra, Christian R.
dc.relation.issupplementedbybioproject:PRJNA282461
refterms.dateFOA2017-02-03T00:00:00Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Bioproject]</i> <br/> Title: Fungia granulosa microbiome under different salinitiesPublication Date: 2015-04-28. bioproject: <a href="https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA282461" >PRJNA282461</a> Handle: <a href="http://hdl.handle.net/10754/666443" >10754/666443</a></a></li></ul>
dc.date.published-online2016-03-01
dc.date.published-print2016-03


Files in this item

Thumbnail
Name:
R-thig_et_al-2016-Molecular_Ecology.pdf
Size:
944.4Kb
Format:
PDF
Description:
Accepted Manuscript
Thumbnail
Name:
mec13567-sup-0001-FigS1.pdf
Size:
646.3Kb
Format:
PDF
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0002-FigS2.pdf
Size:
5.830Mb
Format:
PDF
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0003-FigS3.pdf
Size:
27.40Kb
Format:
PDF
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0004-FigS4.PDF
Size:
413.5Kb
Format:
PDF
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0005-TableS1.xlsx
Size:
8.538Kb
Format:
Microsoft Excel 2007
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0006-TableS2.xlsx
Size:
525.8Kb
Format:
Microsoft Excel 2007
Description:
Supplemental files
Thumbnail
Name:
mec13567-sup-0007-TableS3.xlsx
Size:
26.45Kb
Format:
Microsoft Excel 2007
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record