• Login
    View Item 
    •   Home
    • Research
    • Presentations
    • View Item
    •   Home
    • Research
    • Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Evolution of physical and biological characteristics of mesoscale eddy in north-central Red Sea

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Presentation
    Authors
    Zarokanellos, Nikolaos cc
    Jones, Burton cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Marine Science Program
    Red Sea Research Center (RSRC)
    Date
    2015-04
    Permanent link to this record
    http://hdl.handle.net/10754/595118
    
    Metadata
    Show full item record
    Abstract
    Eddies appear to be important to both the physical and biogeochemical dynamics of the Red Sea. Numerical simulations of physical dynamics and remote sensing studies of chlorophyll concentration and sea surface height in the Red Sea indicate their importance to the upper portions of the sea (Raitsos et al., 2013; Yao et al., 2014; Zhan et al., 2014). Despite their apparent importance, process studies of these eddies have been lacking. In March 2013 we began an extended observational study of the north-central Red Sea (NCRS) where anticyclonic eddies have been observed. The study began with a ship-based characterization of the eddy and was followed by a three-month observational time series using an autonomous glider equipped with a CTD, oxygen sensor, and optical sensors for chlorophyll, CDOM and optical backscatter. The ship-based study captured an initial snapshot of an anticyclonic eddy and it's associated biological and bio-optical distributions. Initially, chlorophyll distributions tended to mirror the density distribution, with deeper isopycnals and chlorophyll maximum depth in the anticyclonic eddy center. The anticyclone eddy in March had an along basin diameter of 150 km, penetrated vertically less than 150 m and elevated near surface chlorophyll concentrations appeared along its outer boundary. The shallowing of the pycnocline of the outer boundaries of the anticyclone eddy on March may elevate nutrients into the lower euphotic zone, contributing to phytoplankton productivity and biomass within the eddy. This eddy contains most of the kinetic energy of the region with the maximum velocities up to 30 - 35 cm/s. The eddy appeared to interact with the coastal reefs where exchange particulate and dissolved matter may occur. The autonomous glider provided the spring-to-summer progression of the system with increasing stratification, shallowing of the subsurface chlorophyll maximum, and fluctuations in the position and intensity of the eddy. Our glider effort showed the development of a cyclonic structure north of the anticyclonic feature and nearer to Yanbu, 23 °N. In oligotrophic regions, like NCRS the deep chlorophyll maximum (DMC) can represent a significant proportion of the depth-integrated productivity. The mesoscale eddy field can further influence the biological response intensification and it played an important role in the primary production. Both types of eddies can transport deeper nutrient-rich waters into the upper ocean, enhancing the primary productivity.
    Conference/Event name
    EGU General Assembly 2015
    Additional Links
    http://adsabs.harvard.edu/abs/2015EGUGA..1710804Z
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Red Sea Research Center (RSRC); Marine Science Program; Presentations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.