Name:
Robust Inference in Sample Selection Models_revised.pdf
Size:
771.2Kb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
Date
2015-11-20Online Publication Date
2015-11-20Print Publication Date
2016-09Permanent link to this record
http://hdl.handle.net/10754/594832
Metadata
Show full item recordAbstract
The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman's two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.Citation
Zhelonkin, M., Genton, M. G. and Ronchetti, E. (2015), Robust inference in sample selection models. Journal of the Royal Statistical Society: Series B (Statistical Methodology).Publisher
WileyAdditional Links
http://doi.wiley.com/10.1111/rssb.12136ae974a485f413a2113503eed53cd6c53
10.1111/rssb.12136